On X-ray Transforms for Rigid Line Complexes and Integrals over Curves in R
نویسندگان
چکیده
Endpoint estimates are proved for model cases of restricted X-ray transforms and singular fractional integral operators in R4.
منابع مشابه
Estimates for Generalized Radon Transforms
Sobolev and L p ? L q estimates for degenerate Fourier integral operators with fold and cusp singularities are discussed. The results for folds yield sharp estimates for restricted X-ray transforms and averages over non-degenerate curves in R 3 and those for cusps give sharp L 2 estimates for restricted X-ray transforms in R 4. In R 4 , sharp Lebesgue space estimates are proven for a class of m...
متن کاملOn X-ray Transforms for Rigid Line Complexes
Endpoint estimates are proved for model cases of restricted X-ray transforms and singular fractional integral operators in R 4 .
متن کاملRIGID DUALIZING COMPLEXES
Let $X$ be a sufficiently nice scheme. We survey some recent progress on dualizing complexes. It turns out that a complex in $kinj X$ is dualizing if and only if tensor product with it induces an equivalence of categories from Murfet's new category $kmpr X$ to the category $kinj X$. In these terms, it becomes interesting to wonder how to glue such equivalences.
متن کاملOne-point Goppa Codes on Some Genus 3 Curves with Applications in Quantum Error-Correcting Codes
We investigate one-point algebraic geometric codes CL(D, G) associated to maximal curves recently characterized by Tafazolian and Torres given by the affine equation yl = f(x), where f(x) is a separable polynomial of degree r relatively prime to l. We mainly focus on the curve y4 = x3 +x and Picard curves given by the equations y3 = x4-x and y3 = x4 -1. As a result, we obtain exact value of min...
متن کاملLINEAR ESTIMATE OF THE NUMBER OF ZEROS OF ABELIAN INTEGRALS FOR A KIND OF QUINTIC HAMILTONIANS
We consider the number of zeros of the integral $I(h) = oint_{Gamma_h} omega$ of real polynomial form $omega$ of degree not greater than $n$ over a family of vanishing cycles on curves $Gamma_h:$ $y^2+3x^2-x^6=h$, where the integral is considered as a function of the parameter $h$. We prove that the number of zeros of $I(h)$, for $0 < h < 2$, is bounded above by $2[frac{n-1}{2}]+1$.
متن کامل